Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative

نویسندگان

  • Agnieszka B. Malinowska
  • Delfim F. M. Torres
چکیده

This paper presents necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrangian depending on the free end-points. The fractional derivatives are defined in the sense of Caputo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

Generalized Euler–Lagrange equations for fuzzy fractional variational calculus

This paper presents the necessary optimality conditions of Euler–Lagrange type for variational problems with natural boundary conditions and problems with holonomic constraints where the fuzzy fractional derivative is described in the combined Caputo sense. The new results are illustrated by computing the extremals of two fuzzy variational problems. AMS subject classifications: 65D10, 92C45

متن کامل

Multiobjective fractional variational calculus in terms of a combined Caputo derivative

Abstract. The study of fractional variational problems in terms of a combined fractional Caputo derivative is introduced. Necessary optimality conditions of Euler–Lagrange type for the basic, isoperimetric, and Lagrange variational problems are proved, as well as transversality and sufficient optimality conditions. This allows to obtain necessary and sufficient Pareto optimality conditions for ...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

B-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy

In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010